Asthma is one of the most common chronic airways diseases worldwide, and its prevalence is increasing. Family doctors (sometimes called ‘primary care physicians’ or ‘general practitioners’) are frequently an asthma patient’s first point of contact with healthcare systems. Disease management that follows evidence-based practice guidelines yields better patient results, but such guidelines are often complicated and may recommend the use of resources not available in the family practice setting. A joint expert panel of the World Organization of Family Doctors (Wonca), International Primary Care Airways Group (IPAG) and the International Primary Care Respiratory Group (IPCRG) offers support to family doctors worldwide by distilling the globally accepted, evidence-based recommendations from the Global Initiative for Asthma (GINA) into this brief reference guide. This guide provides tools intended to supplement a thorough history taking and the clinician’s professional judgment in order to provide the best possible care for patients with asthma. Diagnostic Questionnaires developed for children and adults specifically focus the physician’s attention on key symptoms and markers of asthma. When questionnaire responses suggest a diagnosis of asthma, Diagnosis Guides then lead the clinician through a series of investigations commonly available in primary care to support the diagnosis. In patients >40 years who smoke, COPD is an important alternative diagnosis, and some key aspects of differential diagnosis are illuminated. According to GINA, the goal of asthma treatment is to achieve and maintain control of the disease symptoms long-term. The physician must first assess the patient’s current level of asthma control, then treat asthma in a stepwise manner to achieve and maintain symptom control. Both of these aspects are summarized in figures included in this guide. Finally, the guide also presents a flow chart summarizing management of asthma exacerbations in the acute care setting, and a glossary of asthma medications to assist the clinician in making medication choices for each individual patient. Finally, many patients with asthma also have concomitant allergic rhinitis, and this must be checked. The World Organization of Family Doctors has been delegated by WHO as the group that will be taking primary responsibility for education about chronic respiratory diseases among primary care physicians globally. This document will be a major resource in this educational program.

C. van Weel1, E. D. Bateman2, J. Bousquet3,*, J. Reid4, L. Grouse5, T. Schermer6, E. Valovirta7,*, N. Zhong8

1Department of General Practice, University Medical Centre Nijmegen, Nijmegen, the Netherlands; 2Department of Respiratory Medicine, University of Cape Town Lung Institute, Cape Town, South Africa; 3Allergic Rhinitis and its Impact on Asthma, Service des Maladies Respiratoires, Hôpital Arnaud de Villeneuve, Montpellier Cédex 5, France; 4Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; 5School of Medicine, University of Washington, WA, USA; 6COPD & Asthma Research Co-ordinator, Department of General Practice/Family Medicine, University Medical Centre Nijmegen, Nijmegen, the Netherlands; 7Pediatrician, Pediatric Allergist, Turku Allergy Center, Turku, Finland; 8First Affiliated Hospital, Guangzhou Canton, China

*Global Primary Care education
World Organization of Family Doctors (Wonca)
International Primary Care Respiratory Group (IPCRG)
European Federation of Allergy and Airway Diseases Patients Association (EFA)
Based on the 2007 GINA report update and the IPAG handbook

**GA2LEN is supported by EU framework programme for research, contract number FOOD-CT-2004-506378.

Key words: asthma; GINA; management; primary care.
The purpose of this guide

Management that follows evidence-based practice guidelines yields better patient results. However, global evidence-based practice guidelines are often complicated and recommend the use of resources often not available in the family practice setting worldwide. The prevalence of asthma in family practice is high. In some groups of patients, such as smokers over 40 years, COPD may be more prevalent than asthma. This raises the issues of differential diagnosis, as treatment strategies for asthma and COPD are different. The joint Wonca/GARD expert panel offers support to family doctors worldwide by distilling the Global Initiative for Asthma (GINA) and International Primary Care Airways Group (IPAG) recommendations into this brief reference guide. The guide lists diagnostic and therapeutic measures, which can be carried out in the family medicine environment and in this way it is intended to improve the quality of care for patients with asthma in primary care. This document was prepared by the Wonca Expert Panel including C. van Weel, E. D. Bateman, J. Bousquet, J. Reid, L. Grouse, T. Schermer, E. Valovirta, N. Zhong, and was edited by Dmitry Nonikov. The authors acknowledge the contribution of International Primary Care Respiratory Group (IPCRG), the European Federation of Allergy and Airways Diseases Patients Associations (EFA), and the GINA, who supported the development with their review and input.

Diagnosing asthma

The questionnaires and diagnosis guides supplied below have been specially adapted to facilitate the diagnosis of asthma in primary care. History taking of patients with respiratory and allergy-related problems should be based on the general principles of history taking in primary care. Family doctors should first and foremost apply active listening and then invite patients to express their symptoms, worries and concerns. This will often present a full picture. Validated questionnaires are not intended to replace history taking, but identify key symptoms and elements of the medical history to explore with patients. The investigations presented in the diagnosis guides may not be available in all areas; in most cases, the combination of those diagnostic investigations that are available and the individual healthcare professional's clinical judgment will lead to an accurate clinical diagnosis. The guides are intended to supplement, not replace, a complete physical examination and thorough medical history. For patients diagnosed with asthma, it is important to assess whether they also have allergic rhinitis, a common comorbidity.

Childhood asthma questionnaire (1)

Interpretation

<table>
<thead>
<tr>
<th>Question</th>
<th>Response Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have you/has your child had wheezing or whistling in the chest in the last 12 months?</td>
<td>Yes</td>
</tr>
<tr>
<td>2. In the last 12 months, have you/has your child had a dry cough at night, apart from a cough associated with a cold or chest infection?</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Do you/does your child have a history of hay fever or asthma?</td>
<td>Yes</td>
</tr>
<tr>
<td>4. Is there a family history of asthma in your (child's) first-degree relatives?</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Have you/has your child received more than three courses of antibiotics for respiratory symptoms (both upper and lower respiratory tract) in the last 12 months?</td>
<td>Yes</td>
</tr>
<tr>
<td>6. In the last 12 months, has your (child's) chest sounded wheezy during or after exercise?</td>
<td>Yes</td>
</tr>
<tr>
<td>7. In the last 12 months, has your (child's) sleep been disturbed due to wheezing?</td>
<td>Yes</td>
</tr>
<tr>
<td>8. In the last 12 months, has wheezing ever been severe enough to limit your (child's) speech to only one or two words at a time between breaths?</td>
<td>Yes</td>
</tr>
<tr>
<td>9. In the last 12 months, have you/has your child been to a doctor, an emergency room, or a hospital for wheezing?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In children aged 6–14 years, a positive response to any of the questions above suggests an increased likelihood of asthma, and suggests that the patient should undergo further diagnostic assessment. Positive responses to three or more of the questions in bold suggest a >90% likelihood of asthma. If responses suggest asthma, proceed to the Childhood Asthma Diagnosis Guide below. If responses suggest that asthma is unlikely, consider alternative diagnoses and/or referral to a specialist.

Childhood asthma diagnosis guide (1)

<table>
<thead>
<tr>
<th>Diagnostic Tool</th>
<th>Findings that Support Diagnosis</th>
</tr>
</thead>
</table>
| Physical examination | - Expiratory wheeze on auscultation (may or may not be present),
 - Increased expiratory time (may or may not be present), |
| Reversibility testing with spirometry or PEF | Demonstration of reversible airflow limitation;
 - FEV₁, improves at least 12% or 200 mL, either spontaneously, 15 minutes after inhaled bronchodilator, or after trial of glucocorticosteroid therapy; OR
 - PEF improves at least 50 L/min (or 20% or more of pre-bronchodilator PEF) after inhalation of a bronchodilator. |
| Exercise challenge with spirometry or PEF | Demonstration of airway hyperresponsiveness
 Note: Some children with asthma present only with symptoms associated with exercise, |
| Horn PEF diary (if needed) | Demonstration of variable airflow limitation;
 - Diurnal variation in PEF of more than 30% (with twice-daily readings, more than 10%). |
| Trial of therapy | Improvement with bronchodilators or with trial of inhaled glucocorticosteroid therapy, |
| Allergy skin testing or measurement of allergen-specific IgE in serum | Confirm presence of atopy,
 - Specific triggers identified. |

1 In different healthcare systems, the terms ‘primary care physicians’ or ‘general practitioners’ may be used.
Adult asthma questionnaire (1)

Interpretation

A positive response to any of the questions 1–6, particularly questions one or two in bold, suggests an increased likelihood of asthma. The more the number of positive answers, the greater the likelihood of asthma. If in your judgment, the patient’s responses suggest asthma, proceed to the Adult Asthma Diagnosis Guide below. A positive response to question 7 suggests an occupational association. Referral of the patient to a specialist for further objective testing and assessment is recommended. If answers suggest that asthma is unlikely, consider other diagnoses or specialist referral.

Differential diagnosis with COPD

Among adult patients, it is important to exclude the diagnosis of COPD in making the diagnosis of asthma.

Treating to achieve control

Once asthma is diagnosed, it is important to provide treatment that will control patient symptoms.

Key points:
- Effective and safe pharmacological regimens are available for asthma. Pharmacological treatment is the primary component of asthma management.
- Education is essential for the patients to increase compliance with therapy.
- Allergen avoidance may be indicated in specific patients.

Each patient is assigned to one of five treatment ‘steps’. These detail the treatments at each step for adults and children age 5 and over.

At each treatment step, reliever medication should be provided for quick relief of symptoms as needed (however, be aware of how much reliever medication the patient is using – regular or increased use indicates that asthma is not well controlled). At steps 2 through 5, patients also require one or more regular controller medications, which keep symptoms and attacks from starting. Controller medications include inhaled and systemic glucocorticosteroids, leukotriene modifiers, long-acting inhaled beta-2-agonists in combination with inhaled glucocorticosteroids, sustained-release theophylline, anti-IgE, and other systemic steroid-sparing therapies. Inhaled glucocorticosteroids are currently the most effective anti-inflammatory medications for the treatment of persistent asthma. Their therapeutic index is always more favorable than long-term systemic glucocorticosteroids in asthma. Long-term oral glucocorticosteroid therapy may be required for severe uncontrolled asthma, but its use is limited by the risk of significant adverse effects.

The available literature on treatment of asthma in children 5 years and younger precludes detailed treatment.
recommendations. The best documented treatment to control asthma in these age groups is inhaled glucocorticosteroids and at step 2, a low-dose inhaled glucocorticosteroid is recommended as the initial controller treatment.

Assessing asthma control

Each patient should be assessed to establish his or her current treatment regimen, adherence to the current regimen, and level of asthma control. The need for rescue medication (addressed by questions such as ‘How often do you have to puff on your blue canister?’) is an important factor for assessing asthma control in family medicine. A simplified scheme for recognizing controlled, partly controlled, and uncontrolled asthma is provided in the figure below.

<table>
<thead>
<tr>
<th>Level of Control</th>
<th>Treatment Action</th>
<th>Treatment Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled</td>
<td>Maintain and find lowest controlling step</td>
<td>Reduce</td>
</tr>
<tr>
<td>Partly controlled</td>
<td>Consider stepping up to gain control</td>
<td>Step 1</td>
</tr>
<tr>
<td>Uncontrolled</td>
<td>Step up until controlled</td>
<td>Step 2</td>
</tr>
<tr>
<td>Exacerbation</td>
<td>Treat as exacerbation</td>
<td>Step 3</td>
</tr>
</tbody>
</table>

Management approach based on control

Total dose of topical steroids should be considered if intranasal steroids are used for concomitant allergic rhinitis.

For Children Older Than 5 Years, Adolescents and Adults

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Controlled step 1 (\text{or less/week})</th>
<th>Partly Controlled step 2 (\text{or less/week})</th>
<th>Uncontrolled (\text{or more/week})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime symptoms</td>
<td>None (\text{or less/week})</td>
<td>More than (\text{less/week})</td>
<td>Three or more features of partly controlled asthma present in any week</td>
</tr>
<tr>
<td>Limitations of activity</td>
<td>None</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Nighttime symptoms/awakening</td>
<td>None</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Need for rescue (step 3) medication</td>
<td>None (\text{or less/week})</td>
<td>More than (\text{less/week})</td>
<td>Any</td>
</tr>
<tr>
<td>Long-term treatment (PEF or PEF)(^2)</td>
<td>Normal (< 80%) of predicted or personal best ((\text{less/week}))</td>
<td>Normal (< 80%) of predicted or personal best ((\text{less/week}))</td>
<td>Normal (< 80%) of predicted or personal best ((\text{less/week}))</td>
</tr>
<tr>
<td>Exacerbations</td>
<td>None</td>
<td>One or more ((\text{less/year}))</td>
<td>One or more ((\text{less/year}))</td>
</tr>
</tbody>
</table>

* Any exacerbation should prompt review of maintenance treatment to ensure that it is adequate.

† By definition, an exacerbation in any week makes an uncontrolled asthma week.

‡ Long-term treatment is not suitable for children 5 years and younger.

Controller options

<table>
<thead>
<tr>
<th>Controller options</th>
<th>As needed rapid-acting (\beta_2)-agonist</th>
<th>As needed rapid-acting (\beta_2)-agonist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one</td>
<td>Select one</td>
<td>Add one or more</td>
</tr>
<tr>
<td>Low-dose inhaled ICS(^*)</td>
<td>Low-dose ICS plus long-acting (\beta_2)-agonist</td>
<td>Medium-or high-dose ICS plus long-acting (\beta_2)-agonist</td>
</tr>
<tr>
<td>Leukotriene modifier (^**)</td>
<td>Medium-or high-dose ICS</td>
<td>Leukotriene modifier</td>
</tr>
<tr>
<td>Low-dose ICS plus leukotriene modifier</td>
<td>Sustained release theophylline</td>
<td></td>
</tr>
<tr>
<td>Low-dose ICS plus sustained release theophylline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^*\) ICS = Inhaled glucocorticosteroids

\(^**\) \(\beta_2\)-Adrenergic antagonist or synthesis inhibitors

\(^\text{***}\) Preferred controller options are shown in shaded boxes

Total dose of topical steroids should be considered if intranasal steroids are used for concomitant allergic rhinitis. Alternative reliever treatments include inhaled anticholinergics, short-acting oral \(\beta_2\)-agonists, some long-acting \(\beta_2\)-agonists, and short-acting theophylline. Regular dosing with short and long-acting \(\beta_2\)-agonist is not advised unless accompanied by regular use of an inhaled glucocorticosteroid.

Management of asthma exacerbations in acute care setting

Management of Asthma Exacerbations in Acute Care Setting

Initial Assessment
- History, physical examination (auscultation, use of accessory muscles, heart rate, respiratory rate, PEF or FEV₁, oxygen saturation, arterial blood gas if patient in extremis)

Initial Treatment
- Oxygen to achieve O₂ saturation ≥ 90% (95% in children)
- Inhaled rapid-acting β₂-agonist continuously for one hour
- Systemic glucocorticosteroids if no immediate response, or if patient recently took oral glucocorticosteroid, or if episode is severe
- Sedation is contraindicated in the treatment of an exacerbation

Reassess after 1 Hour
Physical Examination, PEF, O₂ saturation and other tests as needed

Criteria for Moderate Episode:
- PEF 60-80% predicted/personal best
- Physical exam: moderate symptoms, accessory muscle use

Treatment:
- Oxygen
- Inhaled β₂-agonist and inhaled anticholinergic every 60 min
- Oral glucocorticosteroids
- Continue treatment for 1-3 hours, provided there is improvement

Criteria for Severe Episode:
- History of risk factors for near fatal asthma
- PEF < 60% predicted/personal best
- Physical exam: severe symptoms at rest, chest retraction, silent chest on auscultation
- No improvement after initial treatment

Treatment:
- Oxygen
- Inhaled β₂-agonist and inhaled anticholinergic
- Systemic glucocorticosteroids
- Intravenous magnesium

Reassess after 1-2 Hours

Good Response within 1-2 Hours:
- Response sustained 60 min after last treatment
- Physical exam normal:
 - No distress
 - PEF > 70%
 - O₂ saturation > 90% (95% children)

Incomplete Response within 1-2 Hours:
- Risk factors for near fatal asthma
- Physical exam: mild to moderate signs
- PEF < 60%
- O₂ saturation not improving

Admit to Acute Care Setting
- Oxygen
- Inhaled β₂-agonist ± anticholinergic
- Systemic glucocorticosteroids
- Intravenous magnesium
- Monitor PEF, O₂ saturation, pulse

Admit to Intensive Care
- Oxygen
- Inhaled β₂-agonist + anticholinergic
- Intravenous glucocorticosteroids
- Consider intravenous β₂-agonist
- Consider intravenous theophylline
- Possible intubation and mechanical ventilation

Poor Response within 1-2 Hours:
- Risk factors for near fatal asthma
- Physical exam: symptoms severe, drowsiness, confusion
- PEF < 30%
- PCO₂ > 45 mm Hg
- PaO₂ < 60 mm Hg

Admit to Intensive Care
- Oxygen
- Inhaled β₂-agonist + anticholinergic
- Intravenous glucocorticosteroids
- Consider intravenous β₂-agonist
- Consider intravenous theophylline
- Possible intubation and mechanical ventilation

Reassess at intervals

Improved: Criteria for Discharge Home
- PEF > 60% predicted/personal best
- Sustained on oral/inhaled medication

Home Treatment:
- Continue inhaled β₂-agonist
- Consider, in most cases, oral glucocorticosteroids
- Consider adding a combination inhaler
- Patient education: Take medicine correctly
- Review action plan
- Close medical follow-up

Poor Response (see above):
- Admit to Intensive Care

Incomplete response in 6-12 hours
(see above)
- Consider admission to Intensive Care if no improvement within 6-12 hours

Improved (see opposite)

Glossary of asthma medications – controllers

<table>
<thead>
<tr>
<th>Name and Also Known As</th>
<th>Usual Doses</th>
<th>Side Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucocorticosteroids</td>
<td>Inhaled: Beginning dose dependent on asthma control then titrated down over 2-3 months to lowest effective dose once control is achieved. Tablets or syrups: For daily control use lowest effective dose 5-40 mg of prednisone equivalent in a.m. or qid. For acute attacks 40-60 mg daily in 1 or 2 divided doses for adults or 1-2 mg/kg daily in children.</td>
<td>Inhaled: High daily doses may be associated with skin thinning and bruises, and rarely adrenal suppression. Local side effects are hoarseness and oropharyngeal candidiasis. Low to medium doses have produced minor growth delay or suppression (av. 1cm) in children. Attainment of predicted adult height does not appear to be affected. Tablets or syrups: Used long term, may lead to osteoporosis, hypertension, diabetes, cataracts, adrenal suppression, growth suppression, obesity, skin thinning or muscle weakness. Consider coexisting conditions that could be worsened by oral glucocorticosteroids, e.g. herpes virus infections, Varicella, tuberculosis, hypertension, diabetes and osteoporosis.</td>
<td>Inhaled: Potential but small risk of side effects is well balanced by efficacy. Valved holding-chambers with MDIs and mouth washing with DPIs after inhalation decrease oral Candidiasis. Preparations not equivalent on per puff or μg basis. Tablet or syrup: Long term use: alternate day a.m. dosing produces less toxicity. Short term: 3-10 day “bursts” are effective for gaining prompt control.</td>
</tr>
<tr>
<td>Adrenocorticoids Corticosteroids Glucocorticoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled (ICS): Beclomethasone Budesonide Ciclesonide Flunisolide Fluticasone Mometasone furoate Triamcinolone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablets or syrups: hydrocortisone methylprednisolone prednisolone prednisone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium cromoglycate cromolyn cramonies</td>
<td>MDI 2 mg or 5 mg 2-4 inhalations 3-4 times daily. Nebulizer 20 mg 3-4 times daily.</td>
<td>Minimal side effects. Cough may occur upon inhalation.</td>
<td>May take 4-6 weeks to determine maximum effects. Frequent daily dosing required.</td>
</tr>
<tr>
<td>Nedocromil cromonies</td>
<td>MDI 2 mg/puff 2-4 inhalations 2-4 times daily.</td>
<td>Cough may occur upon inhalation.</td>
<td>Some patients unable to tolerate the taste.</td>
</tr>
<tr>
<td>Long-acting β₂-agonists beta-adrenergics sympathomimetics LABAs</td>
<td>Inhaled: DPI-F: 1 inhalation (12 μg) bid. MDI-F: 2 puffs bid. DPI-Sm: 1 inhalation (50 μg) bid. MDI-Sm: 2 puffs bid.</td>
<td>Inhaled: fewer, and less significant, side effects than tablets. Has been associated with an increased risk of severe exacerbations and asthma deaths when added to usual therapy. Tablets: may cause tachycardia, anxiety, skeletal muscle tremor, headache, hypokalemia.</td>
<td>Inhaled: Salmeterol NOT to be used to treat acute attacks. Should not use as monotherapy for controller therapy. Always use as adjunct to ICS therapy. Formoterol has onset similar to salbutamol and has been used as needed for acute symptoms. Tablets: As effective as sustained-release theophylline. No data for use as adjunctive therapy with inhaled glucocorticosteroids.</td>
</tr>
<tr>
<td>Sustained-release Tablets: Salbutamol (S) Terbutaline (T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination ICS/LABA Fluticasone/ salmeterol (F/S)</td>
<td>DPI-F/S 100, 250, or 500 μg/50 μg 1 inhalation bid MDI-F/S 50, 125, or 250 μg /25 μg 2 puffs bid DPI-B/F 100 or 200 μg /6 μg 1 inhalation bid MDI-B/F 80 or 160 μg/ 4.5 μg 2 puffs bid.</td>
<td>Similar to those described above for individual components of the combination</td>
<td>In moderate to severe persistent asthma, combination more effective than doubling the ICS dose. Budesonide/Formoterol has been approved for adjustable as needed dosing in addition to regular dosing in some countries. Dosing is dependent on level of control. Limited data in children 4-11 yrs No data in children < 4 yrs.</td>
</tr>
</tbody>
</table>
Glossary of Asthma Medications – Relievers

<table>
<thead>
<tr>
<th>Name and Also Known As</th>
<th>Usual Doses</th>
<th>Side Effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained-release Theophylline</td>
<td>Starting dose 10 mg/kg/day with usual 800 mg maximum in 1-2 divided doses.</td>
<td>Nausea and vomiting are most common. Serious effects occurring at higher serum concentrations include seizures, tachycardia, and arrhythmias.</td>
<td>Theophylline level monitoring is often required. Absorption and metabolism may be affected by many factors, including febrile illness.</td>
</tr>
<tr>
<td>Antileukotrienes Leukotriene modifiers Montelukast (M)</td>
<td>Adults: M 10mg qhs P 450mg bid Z 20mg bid; Zi 600mg qid.</td>
<td>No specific adverse effects to date at recommended doses. Elevation of liver enzymes with Zafirlukast and Zileuton and limited case reports of reversible hepatitis and hyperbilirubinemia with Zileuton and hepatic failure with Zafirlukast</td>
<td>Antileukotrienes are most effective for patients with mild persistent asthma. They provide additive benefit when added to ICSs though not as effective as inhaled long-acting β₂-agonists.</td>
</tr>
<tr>
<td>Immunomodulators Omalizumab Anti-IgE</td>
<td>Adults: Dose administered subcutaneously every 2 or 4 weeks dependent on weight and IgE concentration.</td>
<td>Pain and bruising at injection site (5-20%) and very rarely anaphylaxis (0.1%).</td>
<td>Need to be stored under refrigeration 2-8°C and maximum of 150 mg administered per injection site.</td>
</tr>
<tr>
<td>Short-acting β₂-agonists Adrenergics β₂-stimulants Sympathomimetics</td>
<td>Differences in potency exist but all products are essentially comparable on a per puff basis. For pre symptomatic use and pretreatment before exercise 2 puffs MDI or 1 inhalation DPI. For asthma attacks ≥ 4 puffs q2-4h, may administer q20min x 3 with medical supervision or the equivalent of 3 mg salbutamol by nebulizer.</td>
<td>Inhaled: tachycardia, skeletal muscle tremor, headache, and irritability. At very high dose hyperglycemia, hypokalemia. Systemic administration as Tablets or Syrup increases the risk of these side effects.</td>
<td>Drug of choice for acute bronchospasm. Inhaled route has faster onset and is more effective than tablet or syrup. Increasing use, lack of expected effect, or use of ≥ 1 canister per month indicate poor asthma control, adjust long-term therapy accordingly. Use of ≥ 2 canisters per month is associated with an increased risk of a severe, life-threatening asthma attack.</td>
</tr>
<tr>
<td>Anticholinergics Ipratropium bromide (IB) Oxitropium bromide</td>
<td>IB-MDI 4-6 puffs q6h or q20 min in the emergency department. Nebulizer 500 μg q20min x 3 then q2-4h q4hrs for adults and 250-500 μg for children.</td>
<td>Minimal mouth dryness or bad taste in the mouth.</td>
<td>May provide additive effects to β₂-agonist but has slower onset of action. Is an alternative for patients with intolerance for β₂-agonists.</td>
</tr>
<tr>
<td>Short-acting theophylline Aminophylline</td>
<td>7 mg/kg loading dose over 20 min followed by 0.4 mg/kg/hr continuous infusion.</td>
<td>Nausea, vomiting, headache. At higher serum concentrations: seizures, tachycardia, and arrhythmias.</td>
<td>Theophylline level monitoring is required. Obtain serum levels 12 and 24 hours into infusion. Maintain between 10-15 μg/mL.</td>
</tr>
<tr>
<td>Epinephrine/ adrenaline injection</td>
<td>1:1000 solution (1mg/mL), 0.1mg/kg can give q20min x 3.</td>
<td>Similar, but more significant effects than selective β₂-agonist. In addition: hypertension, fever, vomiting in children and hallucinations.</td>
<td>In general, not recommended for treating asthma attacks if selective β₂-agonists are available.</td>
</tr>
</tbody>
</table>
Acknowledgements

GINA materials have been used with permission from the Global Initiative for Asthma (http://www.ginasthma.org). Material from the IPAG Handbook has been used with permission from the International Primary Care Airways Group.

This document was developed with an unrestricted educational grant from Nycomed-Altana.

Reference

The Global Initiative for Asthma (GINA) has been supported by educational grants from: AstraZeneca, Boehringer Ingelheim, Chiesi Group, GlaxoSmithKline, Meda Pharma, Merck, Sharp & Dohme, Mitsubishi Tanabe Pharma Corporation, Novartis, Nycomed-Altana, Pharmaxis and Schering-Plough.